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Two Typical Conjectures in this Talk

Conjecture (Z. W. Sun, Nov. 13, 2009). Let p be an odd prime.
Then

p−1∑
k=0

(
2k

k

)3

≡

{
4x2 − 2p (mod p2) if (p

7 ) = 1 & p = x2 + 7y2,

0 (mod p2) if (p
7 ) = −1.

Conjecture (Z. W. Sun, Jan. 2, 2011). We have

∞∑
k=0

30k + 7

(−256)k

(
2k

k

)2

ak =
24

π
,

where ak is the coefficient of xk in (x2 + x + 16)k .

Mathematica Program:
T[n ]:=If[n>0,Coefficient[(x∧2 + x + 16)∧n,x∧n],1]
S[n ]:=Sum[(30k+7)Binomial[2k,k]∧2*T[k]/(−256)∧k,{k,0,n}]
Print[N[S[200]Pi,20]]
Output: 24.000000000000000000
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Part A. Series for 1/π



Gaussian hypergeometric series

The rising factorial (or Pochhammer symbol):

(a)n = a(a + 1) · · · (a + n − 1) =
Γ(a + n)

Γ(a)
.

Note that (1)n = n!.

Classical Gaussian hypergeometric series:

r+1Fr (α0, . . . , αr ;β1, . . . , βr | x) =
∞∑

n=0

(α0)n(α1)n · · · (αr )n
(β1)n · · · (βr )n

· xn

n!
,

where 0 6 α0 6 α1 6 · · · 6 αr < 1, 0 6 β1 6 · · · 6 βr < 1, and
|x | < 1.



Gaussian hypergeometric series

y = r+1Fr (α0, . . . , αr ;β1, . . . , βr | x)

satisfies the differential equation:(
θ

r∏
t=1

(θ + βt − 1)− x
r∏

s=0

(θ + αs)

)
y = 0

where

θ = x
d

dx
.

Clausen’s Identity:

2F1 (2a, 2b; a + b + 1/2 | x)2

=3F2 (2a, 2b, a + b; a + b + 1/2, 2a + 2b | 4x(1− x)) .

In the case a = b = 1/4, it gives the identity( ∞∑
k=0

(
2k

k

)2

xk

)2

=
∞∑

k=0

(
2k

k

)3

(x(1− 16x))k .



Series for 1/π

G. Bauer (1859):

∞∑
k=0

(−1)k(4k + 1)
(1/2)3k
(1)3k

=
∞∑

k=0

(4k + 1)

(2k
k

)3

(−64)k
=

2

π
.

In his famous letter to Hardy, S. Ramanujan mentioned the above
series as one of his discoveries.

In 1914 S. Ramanujan published his first paper in England
Modular equations and approximations to π,
Quart. J. Math. (Oxford), 45(1914), 350–372.

Towards the end of this paper, he wrote “I shall conclude this
paper by giving a few series for 1/π”. Then he listed 17 series for
1/π and briefly mentioned that the first three series are related to
the classical theory of elliptic functions.



Elliptic integrals
Complete elliptic integrals (with 0 < k < 1):

K (k) =

∫ π/2

0

dθ√
1− k2 sin2 θ

(the first kind),

E (k) =

∫ π/2

0

√
1− k2 sin2 θ dθ (the seond kind).

Legendre’s Relation:

E (k)K (
√

1− k2) + E (
√

1− k2)K (k)− K (k)K (
√

1− k2) =
π

2
.

A Central Result:

2F1

(
1

2
,
1

2
; 1

∣∣ k2

)
=

2

π
K (k) = ϕ2(q)

where q = e−πK(
√

1−k2)/K(k) and

ϕ(q) :=
∞∑

n=−∞
qn2

(theta function).



Series for 1/π given by Ramanujan

Two of the 17 series for 1/π recorded by Ramanujan:

∞∑
k=0

6k + 1

4k
·
(1/2)3k
(1)3k

=
∞∑

k=0

(6k + 1)

(2k
k

)3

256k
=

4

π
,

(proved by S. Chowla in 1928)
∞∑

k=0

26390k + 1103

994k
· (1/2)k(1/4)k(3/4)k

(1)3k

=
∞∑

k=0

26390k + 1103

3964k

(
4k

k, k, k, k

)
=

992

2π
√

2
.

In 1985 Jr. R. W. Gosper used the last series of Ramanujan to
calculate 17, 526, 100 digits of π (a world record at that time).

In 1987 Jonathan Borwein and Peter Borwein succeeded in proving
all the 17 Ramanujan series for 1/π.



Ramanujan-type series for 1/π

General forms:

∞∑
k=0

(ak + b)

(2k
k

)3

mk
,

∞∑
k=0

(ak + b)

(2k
k

)2(3k
k

)
mk

,

∞∑
k=0

(ak + b)

(2k
k

)2(4k
2k

)
mk

,

∞∑
k=0

(ak + b)

(2k
k

)(3k
k

)(6k
3k

)
mk

.

There are totally 36 known Ramanujan-type series for 1/π with
a, b,m rational.

D. V. Chudnovsky and G. V. Chudnovsky (1987):

∞∑
k=0

545140134k + 13591409

(−640320)3k

(
6k

3k

)(
3k

k

)(
2k

k

)
=

3× 533602

2π
√

10005
.

Remark. This yielded the record for the calculation of π during
1989-1994.



Other known series for 1/π
T. Sato (2002, announced):

∞∑
k=0

(20n+10−3
√

5)

(√
5− 1

2

)12n n∑
k=0

(
n

k

)2(n + k

k

)2

=
20
√

3 + 9
√

15

6π
.

Yifan Yang (2005, unpublished):

∞∑
n=0

4n + 1

36n

n∑
k=0

(
n

k

)4

=
18√
15 π

.

H. H. Chan, S. H. Chan and Z. G. Liu (2004, Adv. in Math.)

∞∑
n=0

5n + 1

64n

n∑
k=0

(
n

k

)2(2k

k

)(
2n − 2k

n − k

)
=

8√
3 π

.

H. H. Chan and H. Verill (2009, Math. Res. Lett.), M. D. Rogers
(2009, Ramanujan J.)

∞∑
n=0

3n + 1

(−32)n

n∑
k=0

(
n

k

)2(2k

k

)(
2n − 2k

n − k

)
=

2

π
.



Connections to modular forms

Many known series for 1/π have the form

∞∑
k=0

bk + c

mk

(
2k

k

)
uk =

C

π
,

where u−1 = 0, u0 = 1 and

(k + 1)2uk+1 = (Ak2 + Ak + B)uk + Ck2uk−1 (k = 1, 2, 3, . . .),

and there are modular functions (i.e., meromorphic modular forms
of weight 0) x(τ) and x̃(τ) such that

F (τ) =
∞∑

k=0

uk(x(τ))k and F̃ (τ) =
∞∑

k=0

(
2k

k

)
uk(x̃(τ))k

are modular forms of weights 1 and 2 respectively.



Zagier’s contribution

Don Zagier (2009) investigated what integer sequence {un}
satisfies u−1 = 0, u0 = 1, and the Apéry-like recurrence relation

(k + 1)2uk+1 = (Ak2 + Ak + B)uk + Ck2uk−1 (k = 1, 2, 3, . . .).

For example, he noted that if (A,B,C ) = (7, 2, 8), then

un =
∑n

k=0

(n
k

)3
and

η2η
6
3

η2
1η

3
6

=
∞∑

n=0

un

(
η3
1η

9
6

η3
2η

9
3

)n

,

where

ηm := qm/24
∞∏

n=1

(1− qmn) = η(mτ)

with q = e2πiτ and Im(τ) > 0.



Connections to differential equations
Let u−1 = 0, u0 = 1 and

(k + 1)2uk+1 = (Ak2 + Ak + B)uk + Ck2uk−1 (k = 1, 2, 3, . . .).

Then

y =
∞∑

k=0

(
2k

k

)
ukxk

satisfies the third-order differential equation

x2(1− 4Ax − 16Cx2)y ′′′ + 3x(1− 6Ax − 32Cx2)y ′′

+ (1− (12A + 4B)x − 108Cx2)y ′ − 2(b + 6Cx)y = 0.

For f (x) =
∑∞

k=0 ukxk and f̃ (x) =
∑∞

k=0

(2k
k

)
ukxk , there is a

Clausen-type relation

(1 + Cx2)f (x)2 = f̃

(
x(1− Ax − Cx2)

(1 + Cx2)2

)
which can be verified via Maple or Mathematica.



Comments from Baruah, Berndt and Chan

S. Ramanujan attributed his mathematical discoveries to
inspirations from the God. He once said: “An equation for me has
no meaning, unless it represents a thought of God.”

At the end of the article Ramanujan’s series for 1/π: a survey
[Amer. Math. Monthly 116(2009)] by N. D. Baruah, B. C. Berndt
and H. H. Chan, the authors wrote the following comments:

One test of “good” mathematics is that it should generate more
“good” mathematics. Readers have undoubtedly concluded that
Ramanujan’s original series for 1/π have shown the seeds for an
abundant crop of “good” mathematics.



Generalized central trinomial coefficients
For real numbers b and c , we define

Tn(b, c) :=[xn](x2 + bx + c)n

(the coefficient of xn in (x2 + bx + c)n)

=

bn/2c∑
k=0

(
n

2k

)(
2k

k

)
bn−2kck .

Recursion: T0(b, c) = 1, T1(b, c) = b, and

(n + 1)Tn+1(b, c) = (2n + 1)bTn(b, c)− ndTn−1(b, c) (n > 0),

where d = b2 − 4c . It is known that if d 6= 0 then

Tn(b, c) =
√

d
n
Pn

(
b√
d

)
where

Pn(x) :=
n∑

k=0

(
n

k

)(
n + k

k

) (
x − 1

2

)k

is the Legendre polynomial of degree n.



Asymptotic Behavior of Tn(b, c)
By the Laplace-Heine formula, for x 6∈ [−1, 1] we have

Pn(x) ∼ (x +
√

x2 − 1)n+1/2

√
2nπ 4

√
x2 − 1

as n → +∞.

It follows that if b > 0 and c > 0 then

Tn(b, c) ∼ fn(b, c) :=
(b + 2

√
c)n+1/2

2 4
√

c
√

nπ
.

as n → +∞. Note that Tn(−b, c) = (−1)nTn(b, c).
Conjecture (Sun, 2011): For b > 0 and c > 0, we have

Tn(b, c) = fn(b, c)

(
1 +

b − 4
√

c

16n
√

c
+ O

(
1

n2

))
as n → +∞. If c > 0 and b = 4

√
c , then

Tn(b, c)√
c

n =
3× 6n

√
6nπ

(
1 +

1

8n2
+

15

64n3
+

21

32n4
+ O

(
1

n5

))
.

If c < 0 and b ∈ R then

lim
n→∞

n
√
|Tn(b, c)| =

√
b2 − 4c .



My conjectural series involving Tk(b, c) for 1/π

In Jan.-Feb. 2011, I introduced 40 series for 1/π of the following
new types with a, b, c , d ,m integers and mbcd(b2 − 4c) nonzero.

Type I.
∑∞

k=0(a + dk)
(2k

k

)2
Tk(b, c)/mk .

Type II.
∑∞

k=0(a + dk)
(2k

k

)(3k
k

)
Tk(b, c)/mk .

Type III.
∑∞

k=0(a + dk)
(4k
2k

)(2k
k

)
Tk(b, c)/mk .

Type IV.
∑∞

k=0(a + dk)
(2k

k

)2
T2k(b, c)/mk .

Type V.
∑∞

k=0(a + dk)
(2k

k

)(3k
k

)
T3k(b, c)/mk .

Recall that a series
∑∞

k=0 ak is said to converge at a geometric
rate with ratio r if

lim
k→+∞

ak+1

ak
= r ∈ (0, 1).



My conjectural series of type I

∞∑
k=0

30k + 7

(−256)k

(
2k

k

)2

Tk(1, 16) =
24

π
,

∞∑
k=0

30k + 7

(−1024)k

(
2k

k

)2

Tk(34, 1) =
12

π
,

∞∑
k=0

30k − 1

4096k

(
2k

k

)2

Tk(194, 1) =
80

π
,

∞∑
k=0

42k + 5

4096k

(
2k

k

)2

Tk(62, 1) =
16
√

3

π
.

Remark. The first identity was found by me soon after I waked up

in the deep night of Jan. 1, 2011. This began my discovery of
many new series for 1/π.



My conjectural series of type II
I have 12 conjectural series of type II. Here are five of them.

∞∑
k=0

15k + 2

972k

(
2k

k

)(
3k

k

)
Tk(18, 6) =

45
√

3

4π
,

∞∑
k=0

91k + 12

103k

(
2k

k

)(
3k

k

)
Tk(10, 1) =

75
√

3

2π
,

∞∑
k=0

6930k + 559

1023k

(
2k

k

)(
3k

k

)
Tk(102, 1) =

1445
√

6

2π
,

∞∑
k=0

210k − 7157

1983k

(
2k

k

)(
3k

k

)
Tk(287298, 1) =

114345
√

3

π
,

∞∑
k=0

63k + 11

(−13500)k

(
2k

k

)(
3k

k

)
Tk(40, 1458) =

25

12π
(3
√

3 + 4
√

6).

Remark. The 4th series converges very slow (with geometric ratio
71825/71874), even 2000 terms could not contribute one digit.
Prof. G. Almkvist wondered how I could find the identity.



My conjectural series of type III

∞∑
k=0

85k + 2

662k

(
4k

2k

)(
2k

k

)
Tk(52, 1) =

33
√

33

π
,

∞∑
k=0

28k + 5

(−962)k

(
4k

2k

)(
2k

k

)
Tk(110, 1) =

3
√

6

π
,

∞∑
k=0

40k + 3

1122k

(
4k

2k

)(
2k

k

)
Tk(98, 1) =

70
√

21

9π
,

∞∑
k=0

80k + 9

2642k

(
4k

2k

)(
2k

k

)
Tk(257, 256) =

11
√

66

2π
,

∞∑
k=0

80k + 13

(−1682)k

(
4k

2k

)(
2k

k

)
Tk(7, 4096) =

14
√

210 + 21
√

42

8π
.

Remark. Some mathematicians (including my twin brother Z. H.
Sun) wondered how I could find the last identity involving
14
√

210 + 21
√

42.



My conjectural series of type IV
I have 18 conjectural series of type IV. Here are five of them.

∞∑
k=0

340k + 59

(−4802)k

(
2k

k

)2

T2k(62, 1) =
120

π
,

∞∑
k=0

13940k + 1559

(−57602)k

(
2k

k

)2

T2k(322, 1) =
4320

π
,

∞∑
k=0

14280k + 899

392002k

(
2k

k

)2

T2k(198, 1) =
1155

√
6

π
,

∞∑
k=0

57720k + 3967

4392802k

(
2k

k

)2

T2k(5778, 1) =
2890

√
19

π
,

∞∑
k=0

1615k − 314

2433602k

(
2k

k

)2

T2k(54758, 1) =
1989

√
95

4π
.

Remark. I conjectured that my list of the 18 series of type IV is
complete! Prof. G. Almkvist asked me why I thought so.



My conjectural series of type V

∞∑
k=0

1638k + 277

(−240)3k

(
2k

k

)(
3k

k

)
T3k(62, 1) =

44
√

105

π
.

uk =
(3k

k

)
T3k(62, 1) satisfies a very complicated recursion:

(n + 2)2(2n + 1)(2n + 3)(8652n2 + 11536n + 3525)un+2

=372(2n + 1)(6n + 7)(25021584n4 + 116767392n3

+ 188134216n2 + 121113048n + 25958565)un+1

− 127401984000(3n + 1)2(3n + 2)2(8652n2 + 28840n + 23713)un

− 9(n + 2)P(n)62n

(
2n + 2

n

)(
3n + 2

n

)(
3n + 2

2n

)
,

where

P(n) :=31420906020n5 + 136307337012n4 + 127456779135n3

− 126369328953n2 − 174985958380n + 705000.



Comments

Concerning my 40 conjectural series involving Tk(b, c), I have
contacted many experts related to π-series such as G. Almkvist, G.
Andrews, B. C. Berndt, H. H. Chan, S. Cooper, Y. Yang, D.
Zagier, and they felt that those conjectures could not be proved by
the current tools used to establish Ramanujan-type series.

In a message to me, Prof. S. Cooper made the following
comments: “They are completely mysterious!”

Besides the 40 series involving Tk(b, c), I have totally 124
conjectural series for powers of π and other constants, 118 of
which are for 1/π. For the full list, see my article
List of conjectural series for powers of π and other constants
http://arxiv.org/abs/1102.5649

All my conjectural series come from
combinations of philosophy, intuition, inspiration, experience
and computation!



More examples of my conjectural series

∞∑
n=0

1054n + 233

480n

(
2n

n

) n∑
k=0

(
n

k

)2(2k

n

)
(−1)k82k−n =

520

π
,

∞∑
n=0

162n + 17

320n

(
2n

n

) n∑
k=0

(−1)k
(
−1/4

k

)2(−3/4

n − k

)
=

16
√

10

π
,

∞∑
n=0

1500000n + 87659

(−1000004)n

(
2n

n

) n∑
k=0

(−1)k
(
−1/3

k

)2(−2/3

n − k

)
=

16854
√

267

π
,

∞∑
n=0

18n2 + 7n + 1

(−128)n

(
2n

n

)2 n∑
k=0

(
−1/4

k

)2(−3/4

n − k

)2

=
4
√

2

π2
,

∞∑
n=0

40n2 + 26n + 5

(−256)n

(
2n

n

)2 n∑
k=0

(
n

k

)2(2k

k

)(
2(n − k)

n − k

)
=

24

π2
.

Remark. I think nobody could understand how I found the 3rd
series which converges very fast (20 terms contribute 100 digits).



Part B. On x2 mod p2 with 4p = x2 + dy 2



Gauss’ congruence

Gauss’ Congruence. Let p ≡ 1 (mod 4) be a prime and write
p = x2 + y2 with x ≡ 1 (mod 4) and y ≡ 0 (mod 2). Then(

(p − 1)/2

(p − 1)/4

)
≡ 2x (mod p).

Further Refinement of Gauss’ Result (Chowla, Dwork and
Evans, 1986):(

(p − 1)/2

(p − 1)/4

)
≡ 2p−1 + 1

2

(
2x − p

2x

)
(mod p2).

It follows that(
(p − 1)/2

(p − 1)/4

)2

≡ 2p−1(4x2 − 2p) (mod p2).



Determine x in p = x2 + 7y 2

It is well known that the only imaginary quadratic fields with class
number one are those Q(

√
−d) with

d = 1, 2, 3, 7, 11, 19, 43, 67, 163.

In 1977, A. R. Rajwade proved that for any odd prime p we have

p−1∑
x=0

(
x3 + 21x2 + 112x

p

)

=

{
−2x( x

7 ) if (p
7 ) = 1 & p = x2 + 7y2 (x , y ∈ Z),

0 if (p
7 ) = −1, i.e., p ≡ 3, 5, 6 (mod 7).



Determine x in 4p = x2 + dy 2 with d = 11, 19, 43, 67, 163
Let p be an odd prime.

Via elliptic curves with complex multiplication, it is known [cf.
Acta Arith. 40(1982) and JNT 19(1984), 55(1995), 61(1996)] that
for d = 11, 19, 43, 67, 163 we have

p−1∑
x=0

(
fd(x)

p

)
=

{
( 2
p )( x

d )d if ( p
d ) = 1 & 4p = x2 + dy2 (x , y ∈ Z),

0 if ( p
d ) = −1,

where

f11(x) =x3 − 96 · 11x + 112 · 112,

f19(x) =x3 − 8 · 19x + 2 · 192,

f43(x) =x3 − 80 · 43x + 42 · 432,

f67(x) =x3 − 440 · 67x + 434 · 672,

f163(x) =x3 − 80 · 23 · 29 · 163x + 14 · 11 · 19 · 127 · 1632.



Determining x mod p2 with p = x2 + y 2 and 4 | x − 1

Theorem (Z. W. Sun, 2011). Let p ≡ 1 (mod 4) be a prime.
Write p = x2 + y2 with x ≡ 1 (mod 4) and y ≡ 0 (mod 2). Then

(−1)(p−1)/4 x ≡
(p−1)/2∑

k=0

k + 1

8k

(
2k

k

)2

≡
(p−1)/2∑

k=0

2k + 1

(−16)k

(
2k

k

)2

(mod p2).

Remark. Let p ≡ 1 (mod 4) be a prime and write p = x2 + y2

with x ≡ 1 (mod 4) and y ≡ 0 (mod 2). Z. H. Sun [Proc. AMS]
proved the author’s conjectural congruences

(p−1)/2∑
k=0

(2k
k

)2

8k
≡

(p−1)/2∑
k=0

(2k
k

)2

(−16)k
≡ (−1)(p−1)/4

(
2x − p

2x

)
(mod p2).



On x mod p2 with p = x2 + 3y 2 or p = x2 + 7y 2

Conjecture (Z. W. Sun) Let p > 3 be a prime. Then

p−1∑
k=0

(2k
k

)( 4k
2k+1

)
48k

≡ 0 (mod p2).

If p ≡ 1 (mod 3) and p = x2 + 3y2 with x ≡ 1 (mod 3), then

x ≡
p−1∑
k=0

k + 1

48k

(
2k

k

)(
4k

2k

)
(mod p2).

Conjecture (Z. W. Sun) Let p > 3 be a prime. If (p
7 ) = 1 and

p = x2 + 7y2 with ( x
7 ) = 1, then

p−1∑
k=0

k + 8

63k

(
2k

k

)(
4k

2k

)
≡ 8

(p

3

)
x (mod p2).



My problems for x2 mod p2 with 4p = x2 + dy 2

Problem 1. Given a squarefree positive integer d , find integers
a0, a1, a2, . . . such that for any prime p > 3 not dividing d we have

p−1∑
k=0

ak ≡

{
x2 − 2p (mod p2) if 4p = x2 + dy2 (and 4 - x if d = 1),

0 (mod p2) if (−d
p ) = −1.

If one thinks that the integral condition of a0, a1, a2, . . . in Problem
1 is too harsh, we may study the following easier problem.

Problem 2. Given a squarefree positive integer d , find rational
numbers a0, a1, a2, . . . with denominators not divisible by large
primes such that for large primes p we have

p−1∑
k=0

ak ≡

{
x2 − 2p (mod p2) if 4p = x2 + dy2 (and 4 - x if d = 1),

0 (mod p2) if (−d
p ) = −1.

We find that Problems 1 and 2 have affirmative answers for most
of those d ∈ Z+ with the imaginary quadratic field Q(

√
−d)

having class number 1 or 2 or 4.



Apéry numbers
In his proof of the irrationality of ζ(3), Apéry introduced

An =
n∑

k=0

(
n

k

)2(n + k

k

)2

(n = 0, 1, 2, . . .).

Conjecture (Z. W. Sun, 2010). For any odd prime p, we have

p−1∑
k=0

Ak ≡

{
4x2 − 2p (mod p2) if p = x2 + 2y2,

0 (mod p2) if p ≡ 5, 7 (mod 8);

also,
p−1∑
k=0

(−1)kAk ≡

{
4x2 − 2p (mod p2) if p = x2 + 3y2,

0 (mod p2) if p ≡ 2 (mod 3).

Remark. In 2011 I proved the mod p version of both congruences
and that

p−1∑
k=0

(−1)kAk ≡ 0 (mod p2) for any prime p ≡ 2 (mod 3).



Solution to Problem 1 for d = 1
Define Apéry polynomials by

An(x) :=
n∑

k=0

(
n

k

)2(n + k

k

)2

xk (n = 0, 1, 2, . . .).

Theorem 1 (Z. W. Sun, 2011) Let p be an odd prime. Then

p−1∑
k=0

(−1)kAk(−2) ≡
p−1∑
k=0

(−1)kAk

(
1

4

)

≡

{
4x2 − 2p (mod p2) if p = x2 + y2 (2 - x),

0 (mod p2) if p ≡ 3 (mod 4).

Remark. A lemma states that for any odd prime p we have

p−1∑
k=0

(2k
k

)3

(−8)k
≡

{
4x2 − 2p (mod p2) if p = x2 + y2 (2 - x),

0 (mod p2) if p ≡ 3 (mod 4).

This was first conjectured by the author in 2009 and later
confirmed by his twin brother Z.-H. Sun in 2010.



Apéry polynomials
Theorem (Z. W. Sun, 2011). Let p be an odd prime. Then

p−1∑
k=0

(−1)kAk(x) ≡
p−1∑
k=0

(2k
k

)3

16k
xk (mod p2).

Also, for any p-adic integer x 6≡ 0 (mod p) we have

p−1∑
k=0

Ak(x) ≡
(

x

p

) p−1∑
k=0

( 4k
k,k,k,k

)
(256x)k

(mod p).

A Key Lemma (Z. W. Sun, 2011). If x is a p-adic integer with
x ≡ 2k (mod p) where k ∈ {0, . . . , (p − 1)/2}, then we have

p−1∑
r=0

(−1)r
(

x

r

)2

≡ (−1)k
(

x

k

)
(mod p2).



More on Apéry numbers and polynomials
Conjecture (Z. W. Sun). Let p be an odd prime. Then

p−1∑
k=0

(−1)kAk(16) ≡
p−1∑
k=0

(
2k

k

)3

≡

{
4x2 − 2p (mod p2) if (p

7 ) = 1 & p = x2 + 7y2 (x , y ∈ Z),

0 (mod p2) if (p
7 ) = −1, i.e., p ≡ 3, 5, 6 (mod 7).

Remark. Recently Z. H. Sun confirmed the second congruence in
the case (p

7 ) = −1 via Legendre polynomials.

Conjecture (Z. W. Sun). Let p > 3 be a prime. If p ≡ 1 (mod 3),
then

p−1∑
k=0

(−1)kAk ≡
p−1∑
k=0

(2k
k

)3

16k
(mod p3).

If p ≡ 1, 3 (mod 8), then

p−1∑
k=0

Ak ≡
p−1∑
k=0

( 4k
k,k,k,k

)
256k

(mod p3).



Arithmetic means involving Apéry numbers
Theorem. Let n ∈ Z+ and x ∈ Z.

(i) (Z. W. Sun, 2010) We have

n−1∑
k=0

(2k + 1)Ak ≡ 0 (mod n).

(ii) (Conjectured by Z. W. Sun in 2010 and proved by V.J.W. Guo
and J. Zeng in 2011)

n−1∑
k=0

(2k + 1)(−1)kAk ≡ 0 (mod n).

Richard Penner (June 2011) pointed out an application of my
proof of (i):

1

n

n−1∑
k=0

(2k + 1)Ak = the trace of the inverse of nHn,

where Hn refers to the Hilbert matrix ( 1
i+j−1)16i ,j6n.



Problem 1 for d = 15
For k = 0, 1, 2, . . . let Tk = Tk(1, 1) = [xk ](x2 + x + 1)k .
Conjecture (Z. W. Sun, 2011). For any prime p > 3, we have

p−1∑
k=0

(−1)k
(

2k

k

)2

Tk

≡


4x2 − 2p (mod p2) if p ≡ 1, 4 (mod 15) & p = x2 + 15y2,

2p − 12x2 (mod p2) if p ≡ 2, 8 (mod 15) & p = 3x2 + 5y2,

0 (mod p2) if ( p
15) = −1.

and
p−1∑
k=0

(105k+44)(−1)k
(

2k

k

)2

Tk ≡ p
(
20 + 24

(p

3

)
(2− 3p−1)

)
(mod p3).

Also,

1

2n
(2n

n

) n−1∑
k=0

(−1)n−1−k(105k+44)

(
2k

k

)2

Tk ∈ Z+ for all n = 1, 2, . . . .



Problem 1 for d = 5
Define polynomials

Sn(x) :=
n∑

k=0

(
n

k

)4

xk (n = 0, 1, 2, . . .).

Conjecture (Sun) Let p be an odd prime. Then

p−1∑
k=0

Sk(−4) ≡
p−1∑
k=0

Sk(−64)

≡


4x2 − 2p (mod p2) if p ≡ 1, 9 (mod 20) & p = x2 + 5y2,

2x2 − 2p (mod p2) if p ≡ 3, 7 (mod 20) & 2p = x2 + 5y2,

0 (mod p2) if (−5
p ) = −1.

p−1∑
k=0

(8k + 7)Sk(−64) ≡ p
( p

15

) (
3 + 4

(
−1

p

))
(mod p2).

1

n

n−1∑
k=0

(8k + 7)Sk(−64) ∈ Z for all n = 1, 2, 3, . . . .



Problem 1 for d = 6
Conjecture (Sun). Let p be an odd prime. Then

p−1∑
k=0

Sk(4)

≡


4x2 − 2p (mod p2) if p ≡ 1, 7 (mod 24) & p = x2 + 6y2,

8x2 − 2p (mod p2) if p ≡ 5, 11 (mod 24) & p = 2x2 + 3y2,

0 (mod p2) if (−6
p ) = −1.

And

p−1∑
k=0

(24k + 17)Sk(4) ≡ p

(
5 + 12

(
2

p

))
(mod p2).

Moreover,

1

n

n−1∑
k=0

(24k + 17)Sk(4) ∈ Z for all n = 1, 2, 3, . . . .



Problem 1 for d = 30
Conjecture (Sun) Let p be an odd prime. Then

p−1∑
k=0

Sk(36)

≡



4x2 − 2p (mod p2) if ( 2
p ) = (p

3 ) = (p
5 ) = 1, p = x2 + 30y2,

12x2 − 2p (mod p2) if (p
3 ) = 1, ( 2

p ) = (p
5 ) = −1, p = 3x2 + 10y2,

8x2 − 2p (mod p2) if ( 2
p ) = 1, (p

3 ) = (p
5 ) = −1, p = 2x2 + 15y2,

2p − 20x2 (mod p2) if (p
5 ) = 1, ( 2

p ) = (p
3 ) = −1, p = 5x2 + 6y2,

0 (mod p2) if (−30
p ) = −1.

p−1∑
k=0

(8k + 7)Sk(36) ≡ p
( p

15

) (
3 + 4

(
−6

p

))
(mod p2).

We also have

1

n

n−1∑
k=0

(8k + 7)Sk(36) ∈ Z for all n = 1, 2, 3, . . . .



Problem 1 for d = 190
Conjecture (Sun) Let p be an odd prime. Then

p−1∑
k=0

Sk(5776)

≡



4x2 − 2p (mod p2) if, ( 2
p ) = (p

5 ) = ( p
19) = 1, p = x2 + 190y2,

8x2 − 2p (mod p2) if ( 2
p ) = 1, (p

5 ) = ( p
19) = −1, p = 2x2 + 95y2,

2p − 20x2 (mod p2) if ( p
19) = 1, ( 2

p ) = (p
5 ) = −1, p = 5x2 + 38y2,

2p − 40x2 (mod p2) if (p
5 ) = 1, ( 2

p ) = ( p
19) = −1, p = 10x2 + 19y2,

0 (mod p2) if (−190
p ) = −1.

p−1∑
k=0

(816k+769)Sk(5776) ≡ p
( p

95

) (
361 + 408

( p

19

))
(mod p2).

Moreover,

1

n

n−1∑
k=0

(816k + 769)Sk(5776) ∈ Z for all n = 1, 2, 3, . . . .



Problem 2 for d = 11, 35
Conjecture (Sun, 2010). Let p be an odd prime. Then

p−1∑
k=0

(2k
k

)2(3k
k

)
64k

≡

{
x2 − 2p (mod p2) if ( p

11) = 1 & 4p = x2 + 11y2 (x , y ∈ Z),

0 (mod p2) if ( p
11) = −1, i.e., p ≡ 2, 6, 7, 8, 10 (mod 11).

1

p

p−1∑
k=0

11k + 3

64k

(
2k

k

)2(3k

k

)
≡ 3 +

7

2
p3Bp−3 (mod p4).

Conjecture (Sun, 2011). Let p 6= 2, 7 be a prime. Then

p−1∑
k=0

(2k
k

)
(−28)k

k∑
j=0

(
k

j

)2(k + j

j

)

≡


x2 − 2p (mod p2) if (p

5 ) = (p
7 ) = 1 & 4p = x2 + 35y2,

2p − 5x2 (mod p2) if (p
5 ) = (p

7 ) = −1 & 4p = 5x2 + 7y2,

0 (mod p2) if ( p
35) = −1.



Philosophy about Series for 1/π
I formulated the following viewpoint the initial version of which
appeared in my message to Number Theory Mailing List sent on
March 30, 2010.

Philosophy about Series for 1/π. Given a regular identity of the
form

∞∑
k=0

(bk + c)
ak

mk
=

C

π
,

where ak , b, c ,m ∈ Z, bm is nonzero and C 2 is rational, there exist
an integer m′ and a squarefree positive integer d with the class
number of Q(

√
−d) in {1, 2, 22, 23, . . .} (and with C/

√
d often

rational) such that either d > 1 and for any prime p > 3 not
dividing dm we have

p−1∑
k=0

ak

mk
≡

{
(m′

p )(x2 − 2p) (mod p2) if 4p = x2 + dy2,

0 (mod p2) if (−d
p ) = −1,

or d = 1, gcd(15,m) > 1, and for any prime p ≡ 3 (mod 4) with
p - 3m we have

∑p−1
k=0 ak/mk ≡ 0 (mod p2).



Illustrating the Philosophy by an Example
Recall my following conjectural series

∞∑
k=0

1638k + 277

(−240)3k

(
2k

k

)(
3k

k

)
T3k(62, 1) =

44
√

105

π
.

Actually this identity was motivated by the following conjecture.
Conjecture (Sun). Let p > 5 be a prime. Then(

15

p

) p−1∑
k=0

(2k
k

)(3k
k

)
T3k(62, 1)

(−240)3k

≡


x2 − 2p (mod p2) if (p

7 ) = ( p
13) = 1 & 4p = x2 + 91y2,

2p − 7x2 (mod p2) if (p
7 ) = ( p

13) = −1 & 4p = 7x2 + 13y2,

0 (mod p2) if ( p
91) = −1.

p−1∑
k=0

(1638k + 277)

(2k
k

)(3k
k

)
T3k(62, 1)

(−240)3k

≡ p

40

(
8701

(
−105

p

)
+ 2379

(
735

p

))
(mod p2).



Another Example Illustrating the Philosophy
Recall my following conjectural series

∞∑
k=0

80k + 13

(−1682)k

(
4k

2k

)(
2k

k

)
Tk(7, 4096) =

14
√

210 + 21
√

42

8π
.

Actually this identity was motivated by the following conjecture.
Conjecture (Sun). Let p > 3 be a prime with p 6= 7. Then(

−42

p

) p−1∑
k=0

(4k
2k

)(2k
k

)
Tk(7, 4096)

(−1682)k

≡


4x2 − 2p (mod p2) if p ≡ 1, 4 (mod 15) & p = x2 + 15y2,

12x2 − 2p (mod p2) if p ≡ 2, 8 (mod 15) & p = 3x2 + 5y2,

0 (mod p2) if ( p
15) = −1.

p−1∑
k=0

80k + 13

(−1682)k

(
4k

2k

)(
2k

k

)
Tk(7, 4096)

≡p

(
3

(
−42

p

)
+ 10

(
−210

p

))
(mod p2).



The Third Example Illustrating the Philosophy
Conjecture (Z. W. Sun, 2011). Let p > 3 be a prime. Then

p−1∑
n=0

(2n
n

)
256n

n∑
k=0

(
2k

k

)2(2(n − k)

n − k

)
12n−k

≡


4x2 − 2p (mod p2) if p ≡ 1, 7 (mod 24) & p = x2 + 6y2,

8x2 − 2p (mod p2) if p ≡ 5, 11 (mod 24) & p = 2x2 + 3y2,

0 (mod p2) if (−6
p ) = −1.

And

p−1∑
n=0

6n − 1

256n

(
2n

n

) n∑
k=0

(
2k

k

)2(2(n − k)

n − k

)
12n−k ≡ −p (mod p2).

Also,

∞∑
n=0

6n − 1

256n

(
2n

n

) n∑
k=0

(
2k

k

)2(2(n − k)

n − k

)
12n−k =

8
√

3

π
.



One More Example Illustrating the Philosophy

Conjecture (Z. W. Sun, 2011). For n ∈ N define

P+
n (x) :=

n∑
k=0

(
n

k

)2(2k

n

)
x2k−n.

Then

∞∑
k=0

8851815k + 1356374

(−29584)k

(
2k

k

)
P+

k (175) =
1349770

√
7

π
.

Also, for any odd prime p 6= 43 we have

p−1∑
k=0

8851815k + 1356374

(−29584)k

(
2k

k

)
P+

k (175)

≡p
(
1300495

(p

7

)
+ 55879

)
(mod p2),



One More Example Illustrating the Philosophy (continued)
and

p−1∑
k=0

(2k
k

)
P+

k (175)

(−29584)k

≡



4x2 − 2p (mod p2) if (−1
p ) = (p

7 ) = ( p
19) = 1,

and p = x2 + 133y2,

2x2 − 2p (mod p2) if (p
7 ) = 1, (−1

p ) = ( p
19) = −1,

and 2p = x2 + 133y2,

2p − 28x2 (mod p2) if ( p
19) = 1, (−1

p ) = (p
7 ) = −1,

and p = 7x2 + 19y2,

2p − 14x2 (mod p2) if (−1
p ) = 1, (p

7 ) = ( p
19) = −1,

and 2p = 7x2 + 19y2,

0 (mod p2) if (−133
p ) = −1.

Remark. The class number of Q(
√
−133) is four.



My secret criterion for existence of series for 1/π of type IV
Hypothesis (Sun, 2011). (i) Suppose that

∞∑
k=0

a0 + a1k

mk

(
2k

k

)2

T2k(b, c) =
C

π

with a0, a1, b, c ,m ∈ Z, b, c > 0 and C 2 ∈ Q \ {0}, and that p2 - c
for any prime p | b. Then c = 1, and

√
|m| is an integer dividing

16(b2 − 4). Also, b = 7 or b ≡ 2 (mod 4).
(ii) Let ε ∈ {±1}, b,m ∈ Z+ and m | 16(b2 − 4). Then, there are
a0, a1 ∈ Z such that

∞∑
k=0

a0 + a1k

(εm2)k

(
2k

k

)2

T2k(b, 1) =
C

π

for some C 6= 0 with C 2 rational, if and only if m > 4(b + 2) and

p−1∑
k=0

(2k
k

)2
T2k(b, 1)

(εm2)k
≡

(
ε(b2 − 4)

p

) p−1∑
k=0

(2k
k

)2
T2k(b, 1)

(εm̄2)k
(mod p2)

for all odd primes p - b2 − 4, where m̄ = 16(b2 − 4)/m.



Summary
Problem 1 for d = 1 already has a positive answer.

We suggest positive answers to Problem 1 for

d ∈ {2, 3, 5, 6, 7, 10, 13, 15, 22, 30, 37, 58, 70, 85, 130, 190}.

We also formulate many conjectures concerning Problem 2; in
particular, we give explicit conjectural positive answers for those
squarefree positive integers d with Q(

√
−d) having class number

at most two except for d = 187, 403.

Note that Q(
√
−d) has class number two if and only if

d ∈ {5, 6, 10, 13, 15, 22, 35, 37, 51, 58,

91, 115, 123, 187, 235, 267, 403, 427}.

Connections of Problems 1 and 2 to series for 1/π are very
mysterious!
Many conjectures of mine might remain open for many years!
For more detailed survey, the reader may consult my preprint
available from http://arxiv.org/abs/1103.4325



Thank you!


